
1

Plain Plane

Final Report

Members

강민지, 원종훈, 박용훈, 이현종

Abstract

All those modern people who are living tough days, may want to share their honest feelings and

thoughts, and comfort each other. General social media, however, where people inevitably expose

and are exposed to glamorous lives, doesn’t meet their needs. This was the starting point of this

totally new SNS service: “Plain Plane”.

“Plain Plane” provides a service for people to share honest feelings and thoughts anonymously.

Here is the catchphrase:

“People plain about their feelings and thoughts on a plain paper,

fold up a paper plane with it, fuel up with plain yogurt, and fly it to the sky.”

Introduction

The service consists of three essential parts: writing new content, replying to the writings, and

sharing pictures of sky.

- Writing new content (for registered users only): Users can write about their feelings and

thoughts anonymously and leave hashtags of the content. Lifespan of the plane depends on

user level (flavor of yogurt). When there is a reply, users evaluate it, which affects the user level

of the replier.

- Replying to the writings (for registered users only): Users can pick up the plane based on the

radar (location based) or random plane list. Those who agreed to use geolocation service can

use radar, and planes flown by location-agreed users are exposed on radar. When using radar,

users choose distance: 5km, 25km, and 100km, then planes flown within the distance are shown.

In random plane list, planes are shown randomly. Both feature supports refreshing the plane

2

list. Users decide which plane to pick up and reply by looking at the hashtags. Lifespan of

replies are permanent.

- Sharing pictures of sky (appreciating for all users, uploading for registered users only): Users

can view all photos randomly or search them by color (red, orange, yellow, green, blue, purple).

Registered users can upload new photos of sky with hashtags. Only sky images can be

uploaded, and non-sky images are blocked by visual recognition algorithm. Lifespan of photos

are permanent.

And here is some additional information of the service:

- Flavor of the yogurt indicates user level. The number of writing and replying per day, and the

lifespan of the plane vary based on the flavor.

 Plain Strawberry Mango Melon Blueberry Jasmine

Write 3 4 5 6 7 777

Reply 4 8 16 32 64 777

Lifetime(day) 2 3 5 8 13 30

Min Likes 0 5 20 50 100 1000

Depending on evaluation users get(Like, Report), flavor can be promoted or degraded. More

than 10 Reports will make user level become soy sauce yogurt, and the user will be banished

from the service. These constraints make users write, pick, and reply sincerely.

- Users are required to pass reCaptcha when logging in or signing up.

- There is optional email field when signing up. If users fill in the field, the users are required to

pass email verification, and they can find password using the email. Initialized password can

be changed in inbox page.

3

Design

 Here is MVC of Plain Plane. There are 10 views and 5 models.

Model

The service is to delete expired or

replied Plane objects for database

optimization, so Reply relation

does not reference Plane relation.

The “is_sky” method for Photo

model classifies the picture is sky.

We used ‘Watson API’ to classify it.

It checks score of sky and ad and

then fill out ads.

 Since a tag is just for explaining

plane and photo briefly, we did

not made Tag model. We add ‘tag’

attributes to plane, photo and

reply model.

4

View

 My page is added compare to Sprint 2. In my page, users can confirm their level and see replies

of their planes. Users can also verify daily remaining planes, the number of write planes, and daily

remaining replies. Below pictures are final view of our pages. Planes page, Gallery page, Write Page,

and My page can be accessed by navigation bar.

Main Page(`/`)

Sign Up (`/sign_up`)

Planes Page(`/planes`)

Write page (`/write`)

Reply Page (`/plane/:id`)

Gallery Page (`/gallery`)

Photo Detail page (‘gallery/:id`)

Reply Detail Page(`/reply/:id`)

My Page (`/my_page`)

Web-flow When

Main page → Sign up A user want to sign up

Main page ↔ Planes A user sign in

Planes ↔ Reply A user clicks the plane

Write → Planes A user folds the plane

Gallery ↔ Photo detail A user clicks the photo from gallery

My page ↔ Reply detail A user clicks the replied plane from my page

* → Main page A user sign out

5

Controller

Left side is view part (frontend) and right side is model part (backend). Left-to-right arrow

represents http request with user inputs from view, and reverse direction represents http response

with data from model. Above the arrow, there is an API that controller uses to transfer JSON data

below the arrow.

6

Implementation

Gallery

The core part of the gallery implementation is sending files through request and receive the result

of visual recognition algorithm by response.

When there is a file input, frontend first wraps the file with Observable, and checks size limit (2MB),

then sends the file with “author_id” and “tag” through XMLHttpRequest(XHR). Observable waits for

response from backend.

Backend restores the file from XHR using chunks, then test whether it is sky or not. Visual

recognition algorithm is implemented by IBM Watson. Algorithm uses custom classifier “Sky

Detection” which consists of “Sky” class and “Ad” class. The classifier is trained to detect whether

the image is sky or not, and whether it is advertisement or not (especially, ads of which backgrounds

are sky can also be detected). Minimum threshold for sky is 0.4 and maximum threshold for ad is

0.1.

After testing, backend sends HttpResponse with proper status. If the image is sky, the response

status is 204 (No Content). Unless, the response status is 406 (Not Acceptable) and uploaded image

is removed.

Observable detects state change and determines further action depending on XHR status code. If

the code is 204, router navigates to gallery page. Unless, it alerts that uploaded image is not

acceptable.

Since XHR follows same-origin policy, there was Cross-Origin Resourcing Sharing (CORS) issue

when sending HttpResponse to frontend (Django doesn’t handle CORS automatically regarding

XHR). The problem was resolved by installing django-cors-headers application.

7

Testing

Unit Test

The unit tests cover all components and modules independently. Jasmine and Karma are used for

frontend testing and Python unit test is used for backend testing. We achieved 90.2% of code

coverage for frontend and 87.9% of code coverage for backend.

The initial goal of code coverage was over 90% for both frontend and backend, but we could not

achieve 90% for backend. This is because it is difficult to test external APIs or file transfer. We will

explain why some components have low coverages.

In frontend, Photo Post component has 64.52% of code coverage because it contains file transfer.

Also, Plane Near Me component has 65.00% because it contains geolocation API.

In backend, gallery/classifier has 33% of code coverage because the code uses Watson classifier

API to classify whether the photo is of sky. gallery/viewsets has 60% because it contains file upload

so that complicated file handling files is needed. Both user/view and user/viewset contain

RECAPCHA API to verify users so they have 44%, 48% of code coverage each.

8

9

Integration Test

The integrations test uses Travis CI and the code coverage is 86%.

Future Works

Developing Visual Recognition Algorithm

Currently, to determine whether the given photo by user is true sky image or not, we are using

IBM’s Watson Developer Cloud API. However, Watson’s free plan service has many limitations, like

daily serving limit, photo size limit, etc.

We are planning to train our own neural network using TensorFlow. By training our own local serving

model, we can overcome the problems of Watson API listed above.

Yogurt Vending Machine

As our service’s profit model, we are planning to add ‘Yogurt Vending Machine’ service. Using PayPal

API, users can donate to our service in the form of buying new yogurt flavor in the vending machine.

Deploy in HTTPS

Our service fully implemented location-based services using geolocation API. However, almost every

modern browser blocks geolocation API invocation when the service is deployed using HTTP

connection. Therefore, location-based services are now supported in very limited condition.

We are planning to deploy our services in HTTPS so that every user can fully use location-based

service in moderate conditions.

10

Lessons Learned
The biggest lesson from this project is “collaboration”.

Deploying service requires magnificent exquisiteness. Thinking out idea is quite easy, but to connect

an idea to actual service, there must present preceding conditions such as team’s coordination,

balance of work, specific planning, etc. It becomes more important for large-scale projects.

Developing software together is like processing big data. While processing data, we need lots of

strategies to solve a large single problem: how to divide data into small unit, how to process each

unit data, and how to combine them. Likely, in team project, we need several strategies, like dividing

work regarding each teammates’ characteristics. We should define the given problem precisely,

make detailed schedule based on that, and run that schedule properly. Also, we should handle

various problems that we meet during sprints.

So far, we did a lot of personal programming projects, so the team project which started from

planning to implementing was unfamiliar to us. The team project was stressful and difficult, but it

was really valuable experience to realize what is needed for successful teamwork with meaningful

outcome. Although the project was smaller scale than real projects in companies, we feel like

finishing warming-up for projects we would encounter in future.

Thanks for passionate professor and TAs. We won’t forget attending this class!

